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Abstract

While Eulerian schemes work well on most gas ows, they have been

shown to admit nonphysical oscillations near some material interfaces,

especially in multimaterial problems associated with deformable solids.

In contrast, Lagrangian schemes work well at multimaterial interfaces,

but su�er from their own di�culties in problems with large deforma-

tions characteristic of most gas ows. We believe that the most robust

schemes will combine the best properties of Eulerian and Lagrangian

schemes. In fact, this paper is dedicated to developing an Eulerian

scheme which treats the interface in Lagrangian way, i.e. as a Heavi-

side function with no smearing along the lines of [10], [4] and [3].

In this paper, we use a level set function [24, 30, 25] to track the

motion of a multimaterial interface in an Eulerian framework. In addi-

tion, the use of ghost cells (actually ghost nodes in our �nite di�erence

framework) and a new Isobaric Fix [6] technique allows us to keep

the density pro�le from smearing out, while still keeping the scheme

robust and easy to program along the lines of [29] with simple exten-

sions to multidimensions and multilevel time integration, e.g. Runge
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Kutta methods. In contrast, [3] and [4] all use ill-advised dimensional

splitting for multidimensional problems and [10], [3], and [4] all su�er

from great complexity when used in conjunction with multilevel time

integrators.
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1 Introduction

Eulerian schemes work well for most problems and can accurately and e�-
ciently handle large deformations characteristic of gases. However, they can
admit nonphysical oscillations near material interfaces due to the smeared
out density pro�le and the radical change in equation of state across a ma-
terial interface. Lagrangian schemes work well on material interfaces, since
they do not smear out the density pro�le and it is clear which equation of
state is valid at each point. Unfortunately, Lagrangian schemes have their
own problems when subjected to large deformations such as those charac-
teristic of gas ow. For a good summary of both Eulerian and Lagrangian
schemes, see [2].

Our method consists of combining the robustness of an Eulerian scheme
with a multimaterial interface method characteristic of a Lagrangian scheme.
We do this by tracking the interface with a level set function [24, 30] which
gives the exact subcell interface location. At this interface, we solve an ap-
proximate Riemann problem similar to the methods in [10], [4] and [3]. In
[10], [4] and [3] the authors use schemes that are intricate in one dimension
and can only be extended to multiple dimensions with dimensional splitting
in time. In addition, multilevel time integrators, such as the Runge Kutta
methods, are hard to implement for these methods. In contrast, our method
draws on ideas from [29] which enables us to treat multidimensional calcula-
tions without time splitting and allows the easy and e�cient implementation
of Runge Kutta methods. This is done with an elegant use of ghost cells and
the application of a new Isobaric Fix technique [6].

We make note of an alternative method of solving interface problems
with Eulerian schemes. In [17], [14], and [5] the authors allow the errors in
density associated with a smeared out material interface, and they attempt
to �x these errors by modifying the internal energy to get exact cancelation of
these error. While some of the preliminary results with a gamma law gas, see
e.g. [31], are extremely promising, it is unclear that it will always be possible
to remedy the errors associated with a smeared out density pro�le. In fact,
the general pressure evolution equation [5] has a discontinuous coe�cient
with no meaningful regularization for general equations of state. We have
pushed this equation to its limits in [21] and have been disappointed by its
lack of robustness. In general, we advocate schemes which do not smear out
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the density pro�le.
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2 Equations

2.1 Euler Equations

The basic equations for two-dimensional compressible ow are the 2D Euler
equations, 0
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where t is time, x and y are the spatial dimensions, � is the density, u and
v are the velocities, E is the total energy per unit volume, and p is the
pressure. The total energy is the sum of the internal energy and the kinetic
energy,

E = �e+
�(u2 + v2)

2
(2)

where e is the internal energy per unit mass. The one-dimensional Euler
equations are obtained by setting v = 0.

In general, the pressure can be written as a function of density and
internal energy, p = p(�; e), or as a function of density and temperature,
p = p(�; T ). In order to complete the model, we need an expression for the
internal energy per unit mass. Since e = e(�; T ) we write

de =

�
@e

@�

�
T

d� +

�
@e

@T

�
�

dT (3)

which can be shown to be equivalent to

de =
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�2

�
d� + cvdT (4)

where cv is the speci�c heat at constant volume. [1]
The sound speeds associated with the equations depend on the partial

derivatives of the pressure, either p� and pe or p� and pT , where the change
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of variables from density and internal energy to density and temperature is
governed by the following relations
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and the sound speed c is given by
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for the case where p = p(�; T ).
The eigenvalues and eigenvectors for the Jacobian matrix of ~F (~U) are

obtained by setting A = 1 and B = 0 in the following formulas, while those
for the Jacobian of ~G(~U) are obtained with A = 0 and B = 1.

The eigenvalues are
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and the eigenvectors are

~L1 =

�
b2
2
+

û
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q2 = u2 + v2; û = Au+Bv; v̂ = Av �Bu; (16)
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The eigensystem for the one-dimensional Euler equations are obtained
by setting v = 0.

2.2 Level Set Equation

We use the level set equation

�t + u�x + v�y = 0 (19)

to keep track of the interface location as the zero level of �. In general �
starts out as the signed distance function, is advected by solving equation
19 using the methods in [11], and then is reinitialized using

�t + S(�o)
�q

�2x + �2y � 1
�
= 0 (20)

to keep � approximately equal to the distance function near the interface
where we need additional information. In this equation, S(�o) is the sign
function of �o with appropriate numerical smearing. More details are given
in the appendix.
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We note that our method allows us to solve equation 19 independently
of the Euler equations. That is, equation 19 can be solved directly using
the method in [11], and the eigensystem for the Euler equations does not
depend on �, since we will be solving only one phase problems with any given
eigensystem (see the later sections). For details on the level set function see
[24, 30].

2.3 Equations of State

We will use the following equations of state in our numerical examples.

2.3.1 Gamma Law gas

For an ideal gas p = �RT where R = Ru

M is the speci�c gas constant, with
Ru � 8:31451 J

molK
the universal gas constant and M the molecular weight

of the gas. Also valid for an ideal gas is cp � cv = R where cp is the speci�c
heat at constant pressure. Additionally, gamma as the ratio of speci�c heats
 = cp

cv
. [1]

For an ideal gas, equation 4 becomes

de = cvdT (21)

and assuming that cv does not depend on temperature (calorically perfect
gas), we integrate to obtain

e = cvT (22)

where we have set e to be zero at 0K. Note that e is not uniquely determined,
and we could choose any value for e at 0K (although one needs to use
caution when dealing with more than one material to be sure that integration
constants are consistent with the heat release in any chemical reactions that
occur).

Note that we may write

p = �RT =
R

cv
�e = ( � 1)�e (23)

for use in the eigensystem.
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2.3.2 Tait Equation of State for Water

We use a sti� equation of state for the water,

p = B

�
�

�o

�
�B +A (24)

where  = 7:15, A = 105Pa, B = 3:31 � 108Pa, and �o = 1; 000 kg
m3 . In

addition, we de�ne

e =
B��1

( � 1)�o
+
B �A

�
(25)

at the internal energy per unit mass. [32]
Note that this equation of state has pe = 0 which causes a division

by zero in the fourth component of ~R2. This can be avoiding with simple
rescaling of ~L2 and ~R2 by dividing and multiplying by b1 respectively. The
new eigenvectors become

~L2 =
��q2 +H; u; v;�1� (26)

and
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0
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b1H � 1

1
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In addition, to model cavitation, the minimum pressure is set to be
pmin = 22:0276Pa [32]. That is, the equation of state becomes p = pmin

for all densities that would admit pressures lower than pmin. Thus, all par-
tial derivatives of pressure are identically zero for densities below

�min = �o

�
pmin �A+B

B

� 1



(28)

and this causes problems in the eigensystem since the sound speed is now
zero. To remedy this problem we use a central scheme [22] when � < �min.
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2.3.3 JWL Equation of state for Explosive Products

We use the following JWL (Jones-Wilkins-Lee) equation of state for explosive
products,

p = A

�
1� !�

R1�o

�
exp

�
�R1�o

�

�
+B

�
1� !�

R2�o

�
exp

�
�R2�o

�

�
+ !�e(29)

where A = 5:484 � 1011Pa, B = 9:375 � 109Pa, R1 = 4:94, R2 = 1:21,
! = :28, and �o = 1; 630 kg

m3 . [32]
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3 Numerical Method

We use the level set function to keep track of the interface. The zero level
marks the location of the interface, while the positive values correspond to
one uid and the negative values correspond to the other. Each uid satis�es
the Euler equations described in the last section with di�erent equations of
state on each side. Based on the work in [11], the discretization of the level
set function can be done independent of the two sets of Euler equations.

Besides discretizing equation 19 we need to discretize two sets of Euler
equations. This will be done with the help of ghost cells. We will describe
the scheme with an excessive use of ghost cells for the sake of clarity, and
comment on e�ciency later.

Given a level set function, it de�nes two separate domains for the two
separate uids, i.e. each point corresponds to one uid or the other. Our
goal is to de�ne a ghost cell at every point in the computational domain. In
this way, each grid point will contain the mass, momentum, and energy for
the real uid that exists at that point (according to the sign of the level set
function) and a ghost mass, momentum, and energy for the other uid that
does not really exist at the point (it is on the other side of the interface).
Once the ghost cells are de�ned, we can use standard methods, e.g. see [29],
to update the Euler equations at every grid point for both uids. Then we
advance the level set function to the next time step and use this to determine
which of the two multidimensional spatial discretizations to use at a given
grid point. This makes multidimensional implementation trivial, since it is
done in the usual straightforward way, i.e. in the usual way for a single phase
uid with no special concern for the interface, e.g. see [29]. In contrast, [10],
[4] and [3] all need ill-advised dimensional splitting for multidimensional
problems.

Consider a general time integrator for the Euler equations. In general,
we construct right hand sides of the ordinary di�erential equation for both
uids (based on the methods in [29]), then we advance the level set to the
next time level and pick one of the two right hand sides to use for the Euler
equations based on the sign of the level set function. This can be done for
every step and every combination of steps in a multistep method. Since
both uids are solved for at every grid point, we just choose the appropriate
uid based on the sign of the level set function. This is incredibly simple to
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program and apply as opposed to complexity and decision making involved
with the use of multilevel time integrators in [10], [4] and [3].

To summarize, the method described here is trivial to implement. Use
ghost cells to de�ne each uid at every point in the computational domain.
Update each uid separately in multidimensional space for one time step
or one substep of a multistep time integrator with standard methods. Then
update the level set function independently using the real uid velocities and
the sign of the level set function to decide which of the two answers is the
valid answer at each grid point. Keep the valid answer and discard the other
so that only one uid is de�ned at each grid point. Note that multistep time
integrators will also require one to save the right hand side of the ordinary
di�erential equation for both uids for possible use at a later time level.
Then de�ne new ghost cells and start over. In this we have regulated all the
di�cult decision making about special cases on interface crossing, cut cells,
etc. to the subroutine that decides how to de�ne the ghost cells. In fact,
the entire method relies on the ability to produce ghost cells that satisfy the
appropriate boundary conditions for the Euler equations. In this way, one
can compute solutions to multiphase ow problems with one's own favorite
single phase solver by adding a new routine to de�ne and deal with ghost
cells. We chose to use the ENO scheme and TVD Runge Kutta methods
from [29].

Lastly, we note that only a band of 3 to 5 ghost cells on each side of
the interface is actually needed by the computational method depending
on the stencil and movement of the interface. One can optimize the code
accordingly.
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4 De�ning the Ghost Cells

Since a standard one phase solver will be used, the ghost nodes are the
key to the numerical method. We have discovered that a straightforward
boundary condition capturing approach yields surprisingly good results as is
demonstrated by our numerical examples.

4.1 One Dimension

To de�ne the ghost nodes in one spatial dimension, three quantities must
be de�ned in the ghost region, then the equation of state along with the
appropriate algebraic relations can be used to get the mass, momentum, and
energy.

We choose pressure and velocity as two of our three variables for physical
reasons. In many problems, pressure and velocity are continuous across
the interface and we can set the pressure and velocity of the ghost uid
identically equal to the pressure and velocity of the real uid at each point.
That is, node by node we can copy the real uid values of pressure and
velocity into the ghost uid values of pressure and velocity. In this way
we capture the interface boundary conditions for the pressure and velocity
without explicitly identifying the interface location. Some modi�cation of
this procedure is necessary when the pressure and velocity are discontinuous
as will be discussed in a future paper.

Once the pressure and velocity have been de�ned at each ghost node, one
more quantity needs to be de�ned. In [6], it was shown that one degree of
freedom exists at a material interface or contact discontinuity. This degree
of freedom corresponds to the advection of entropy in the linearly degenerate
�eld. Note that entropy is generally discontinuous at a contact discontinuity.
When one applies a standard �nite di�erence scheme to a discontinuous
function, large errors result since the truncation error is not small. Shock
capturing methods have traditionally avoided the large dispersive errors with
a myriad of special techniques while still allowing the large dissipative errors
that are usually harmless in a one phase computation. However, these large
dissipative errors can be the source of spurious oscillations in a two phase
computation.
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We eliminate the dissipative errors in the numerical method by using
one sided extrapolation of the entropy. De�ning the ghost cells with one
sided extrapolation of the entropy will create a continuous entropy pro�le
and remove the large errors due to numerical dissipation. Note that the
discontinuous nature of the entropy pro�le dictates that one sided extrapo-
lation will capture the appropriate boundary condition. As discussed in [6],
there is a true degree of freedom at a contact discontinuity and one has some
choice as to which variable to extrapolate, although one needs to use caution
since there will be di�erent degrees of \overheating" errors depending on the
variable chosen. See [6] for details.

At this point, we describe the method in detail. Suppose that the zero
level of the level set function lies between nodes i and i + 1, i.e. the level
set function changes sign between these nodes. Then uid 1 is de�ned at
node i and to the left of node i, while uid 2 is de�ned at node i+ 1 and to
the right of node i + 1. In order to update uid 1, we need to de�ne ghost
uid values of uid 1 at nodes to the right and including node i + 1. For
each of these nodes, we de�ne the ghost uid value by combining uid 2's
pressure and velocity at each node with the entropy of uid 1 from node
i. This is constant extrapolation of entropy which is actually preferred over
high order extrapolation since our interface will behave in a fashion similar
to the piston in [6] su�ering from \overheating" errors. In fact we always
use constant extrapolation of entropy to minimize the \overheating" errors.
Likewise, we create a ghost uid for uid 2 in the region to the left and
including node i. This is done by combining uid 1's pressure and velocity
at each node with the entropy of uid 2 from node i+ 1.

As discussed in [6], the isobaric �x technique can be used to reduce the
\overheating" errors. This technique allows the entropy in real uid values to
change. In order to apply our isobaric �x technique, we change the entropy
at node i to be equal to the entropy at node i � 1 without modifying the
values of the pressure and velocity at node i. Likewise, we change the entropy
at node i + 1 to be equal to the entropy at node i + 2. This completes the
isobaric �x, and then the ghost cells are de�ned as outlined above using these
new values for the entropy.

Note that the isobaric �x can be combined with ghost node population in
a simple way. For the nodes to the right and including node i, combine the
pressure and velocity of each node with the entropy from node i � 1. This
de�nes uid 1 to the right and including node i. For the nodes to the left and
including node i+1, combine the pressure and velocity of each node with the
entropy of node i+2. This de�nes uid 2 to the left and including node i+1.
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This method is especially e�ective in multidimensional implementation.
An important aspect of this method is its simplicity. We do not need to

solve a Riemann problem, consider the Rankine-Hugoniot jump conditions,
or solve an initial boundary value problem at the interface. We capture the
appropriate interface conditions by de�ning a uid that has the pressure
and velocity of the real uid at each point, but the entropy of some other
uid. Consider the case of air and water. In order to solve for the air,
we replace the water with ghost air that acts like the water in every way
(pressure and velocity) but appears to be air (entropy). In order to solve
for the water, we replace the air with ghost water that acts like the air in
every way (pressure and velocity) but appears to be water (entropy). Since
the ghost uids behave in a fashion consistent with the real uids that they
are replacing, the appropriate boundary conditions are captured. Since the
ghost uids have the same entropy as the real uid that is not replaced, we
are solving a one phase problem. We name this method the "Ghost Fluid
Method", not to be confused with ghost cells or ghost nodes which are used
in the implementation of the method and have been in use for quite some
time.

4.2 Justi�cation

Here we provide a justi�cation of why our method works. Consider the case
of a solid wall boundary, where a reection condition is used for the ghost
cells. One can think of this as prescribing waves in the ghost region which
are identical to those in the real uid so that the real uid does not escape
when it interacts with the boundary. Instead, it sees its reected twin and
behaves as if the boundary was impenetrable [33]. Now consider an interface
anywhere in a uid. We want the uid on one side of the interface to behave
in the appropriate way when we add our ghost cells, and thus the easiest
thing to do is to let all the ghost values be equal to the real uid values at
that point. In this way, the ghost cells do nothing and the scheme is just the
standard Eulerian scheme.

Unfortunately this standard Eulerian scheme does not behave well in
certain situations, just as the piston does not behave well in [6] due to \over-
heating". This implies that a simple modi�cation of the ghost cells is needed
similar to [6]. We noticed in [6], that the only modi�cation necessary to cure
\overheating" was an isobaric �x. If one thinks of the smearing out of the
density pro�le in a contact discontinuity as a phenomena similar to \over-
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heating" than it becomes obvious that the isobaric �x technique will work
well here. Thus, the only modi�cation in the ghost cells is to use the isobaric
�x technique, while leaving the pressure and velocity unchanged.

4.3 Multidimensions

The above procedure is for one dimensional problems and as trivial as it
seems, it does the job. For multidimensional problems, the ghost cells be-
come more involved. We have more than one velocity to deal with, and we
need to make some choices for the direction of extrapolation. In multidi-
mensions, we treat the pressure and the three dimensional velocity �eld in
the usual way, just de�ning the ghost values equal to the real uids values.
In order to �nish the ghost cell procedure, we need to apply the isobaric
�x technique to all the cells bordering the interface, and we need to extend
the isobaric �x variable into the ghost region in a fashion that resembles the
constant extrapolation done in the one dimensional case.

A natural way applying the isobaric �x technique exists because of the
level set formulation. Using the level set function, we can de�ne the unit
normal at every grid point as

~N =
~5�
j~5�j

(30)

and then solve a partial di�erential equation for constant extrapolation in
the normal direction. This equation is

It � ~N � ~5I = 0 (31)

where I is the isobaric �x variable, e.g. the entropy. Note that the normal,
~N , always points from the negative uid into the positive uid. We use the
\+" sign in equation 31 to populate a ghost uid in the region where � > 0
with the values of I from the region where � < 0, while keeping the real uid
values of I �xed in the region where � < 0. Likewise, we use the \-" sign
in equation 31 to populate a ghost uid in the region where � < 0 with the
values of I from the region where � > 0, while keeping the real uid values
of I �xed in the region where � > 0. This equation only needs to be solved
for a few time steps to populate a thin band of ghost cells needed for the
numerical method. Once the ghost cells are populated we can reassemble
the conserved variables.

16



Note that the above procedure does not apply an isobaric �x to the cells
in the real uid which border the interface. In order to apply the isobaric
�x, we keep the real uid values of I �xed in the region where � < �� when
using the \+" sign in equation 31, and we keep the real uid values of I �xed
in the region where � > � when using the \-" sign in equation 31. Since �
is an approximate distance function, we choose � to be the thickness of the
band in which we wish to apply the isobaric �x. We use � = 1:54x.

4.4 Boundary Conditions

In some multimaterial problems, large jumps in tangential velocity exist at
the interface similar to the jumps in density and equation of state that we
remedy in this paper. Most schemes will smear out this jump in tangential
velocity due to numerical dissipation. An extension of our method allows
one to avoid this smearing.

We use the interface normal, ~N , to separate the three component velocity
�eld into a tangential and a normal component. The normal component is
treated in the same fashion as the velocity in one dimension, i.e. we copy the
normal velocity directly into the ghost cells with no change. The tangential
velocity is handled in the same way as the isobaric �x variable, i.e. the goal
is to extrapolate it or extend it as a constant in the normal direction. In two
dimensions, a tangent vector must be chosen consistently in one direction or
the other. In three dimensions, one has a di�cult time choosing a consistent
two dimensional basis for the tangent plane. We remove the di�culty in
extension to higher dimensions by applying a basis free projection method
similar to the CPM (Complementary Projection Method) [8].

We de�ne the normal at each point by equation 30 and the velocity as
~V =< u; v; w >. Once these are de�ned, we solve the propagation equation
31 where ~I is now a column vector of length four which contains the three
dimensional velocity �eld and the isobaric �x variable. Then at every cell
in the ghost region we have two separate velocity �elds, one from the real
uid and one from the ghost uid. Then for each velocity �eld, the normal
component of velocity, VN = ~V � ~N , is put into a three component vector,
VN ~N , and then we use a complementary projection idea to de�ne the two
dimensional velocity �eld in the tangent plane by another three component
vector, ~V � VN ~N . Then we take the normal component of velocity, VN ~N ,
from the real uid and the tangential component of velocity, ~V �VN ~N , from
the ghost uid and add them back together to get our new velocity to occupy
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the ghost cell.
We present a simple model to illustrate how the method works. Consider

a line in two dimensions or a plane in three dimensions which de�nes a
material interface. Assume that the normal component of velocity is constant
across the interface, while the tangential velocity is constant on each side of
the interface but jumps across the interface. Consider populating one of the
ghost regions with the velocity from the other side of the interface. Since
the entire velocity �eld on one side of the interface is a constant, we are
just advecting that constant value into the ghost region. Then we split the
velocity �eld into a normal and tangential component for both the ghost
cells and the real uid. We keep the tangential component from the ghost
uid and the normal component from the real uid. Since the real uid has
the same normal velocity on both sides of the interface, our procedure is
equivalent to just keeping both components of the ghost cell velocity �eld.
This is equivalent to using a constant velocity �eld, and our method has no
knowledge of a jump in velocity at the interface. This allows our method
to completely avoid smearing and leads to exact modeling of planar shear
waves.

Shear waves may or may not be stable [23]. For example, shear waves are
stable in high Mach number ows and when materials have strength (such
as steel). Besides the obvious smearing errors, standard schemes may su�er
other problems due to their inability to correctly model these shear waves.
For example, a shear wave moving across the grid will su�er from a pressure
overshoot, while our scheme does not have this problem. In addition, there
are many large forces that may be incorrectly excited in material models due
to erroneous smeared out velocity pro�les. For example, consider two pieces
of steel slowly sliding past each other at room temperature. The velocity
pro�le will smear, inducing a continuous, non-constant velocity pro�le in
each piece of steel. This erroneous non-constant velocity pro�le will induce
large non-physical resistant forces from a continuum model.

In many cases a jump in tangential velocity is not stable, and will lead
to a Kelvin-Helmholtz instability. This instability is not well posed for the
Euler equations, and only becomes well posed when viscosity (or some other
regularization such as surface tension) is added, e.g. Navier-Stokes ow.
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4.5 A Note On Conservation and Convergence

Here, we briey discuss the issues of conservation and convergence of the
numerical algorithm. The method described in this paper breaks the com-
putational domain into two separate uids. Within each uid a standard
conservative ux di�erencing scheme is used. At the interface between the
two uids, there is formally a lack of discrete conservation on a set of mea-
sure zero. Fluxes that exists between two di�erent uids are not unique.
Since the pressure and normal velocity in each uid are the same, these
uxes do have a unique pressure and normal velocity. However, they di�er
in their values of entropy and tangential velocities. We note that entropy
and tangential velocities move with the speed of the uid, so they do not
cross the interface. In addition, there will be a lack of conservation due to
the advection of the level set function, �, similar to the area loss problem
seen in incompressible ow calculations [30].

Since the scheme is formally non-conservative at the interface, we expect
our scheme to behave like a fully conservative scheme with an O(�xn) source
term acting over the material interface. Here n is related to the order at
which we are specifying the ghost node states and the order in which we im-
plement the level set method. If the interface length, L(t), is independent of
resolution, then the overall lack of conservation will be of O(�xn

R t
0
L(t)dt).

Clearly if n > 0, one will achieve conservation. See Section 5.7 for an exam-
ple where it appears that n = 2. Since in this case, conservation is achieved
under resolution, and since our discretization is numerically consistent with
the Euler equations, we expect to also get convergence to the proper weak
solution. Again this is seen in Section 5.7.

In general, we expect that for stable interface ows, the above arguments
will hold, and the algorithm should achieve both convergence and conserva-
tion under mesh re�nement. Unfortunately, the inviscid Euler equations will
generally be unstable at material interfaces due to either Kelvin-Helmholtz
[12] or Richtmyer-Meshkov [27] types of instabilities. In these cases, the
growth rate of an in�nitesimal disturbance is usually proportional to the
wavenumber of the disturbance [23] and L(t) is resolution dependent. Since
under re�nement �ner scales are introduced, it is likely that L(t) / 1=�xm.
Here, it is most likely thatm > 0, and the length of the interface will become
larger under re�nement. In this case the error in conservation would be of
O(�xn�m

R t
0
L�(t)dt), where L� is the length of the interface at a particular

resolution (i.e. �xed). The fact that the interface may be growing is brought
outside the integral and is grouped with n. We expect conservation under
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mesh re�nement when n > m, and expect to lose conservation when n < m.
Note that it is very di�cult in general to determine both n and m just given
some initial/boundary value problem. It may be possible that for a physi-
cally unstable problem that n =m, in which case under re�nement one may
observe a �xed (and possibly small) error in conservation. The example in
Section 5.8 may be of this type, but it is probably best to simply monitor the
error in conservation for each problem and to attempt to determine n �m

numerically.
It should be noted that many \fully conservative" schemes may conserve

overall mass, but may not conserve mass of each constituent [24]. In addi-
tion, problems where the Euler equations have instabilities at all wavelengths
will never be a resolved even with a perfectly conservative scheme. For the
method described in this paper, conservation is achieved under resolution
for problems that have a resolvable solution.
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5 Examples

Unless otherwise noted the calculations are done with 3rd order ENO-LLF
(essentially non-oscillatory - local Lax-Friedrichs) and 3rd order TVD RK
(total variation diminishing Runge-Kutta) [29], except where the water cav-
itates where the 3rd order central scheme [22] is used for the spatial dis-
cretization.

5.1 Example 1

In this �rst example, we explore a simple one phase problem where an Eu-
lerian scheme works well with no oscillations. We will compare our scheme
to the standard Eulerian scheme.

This problem was taken from [32]. Consider a gamma law gas with
 = 1:4 on a 4m domain with 100 grid points. The interface is located
midway between the 50th and 51st grid points with left and right states
de�ned as �L = 2 kg

m3 , �R = 1 kg
m3 , pL = 9:8� 105Pa, pR = 2:45� 105Pa, and

uL = uR = 0ms . We ran the code to a �nal time of .0022 seconds.
The results in �gure 1 were obtained with the standard scheme while the

results in �gure 2 were obtained with the use of the new ghost cell technique
where we choose the isobaric �x variable to be entropy for extrapolation,
but do not use the isobaric �x itself. Notice the slight overheating near the
contact discontinuity. In �gure 3, we add the constant entropy isobaric �x
to clean up the overheating. All three sets of results are plotted on top of
the exact solution.

Note that we still capture the shock and still generate the large dissipa-
tive errors characteristic of shock capturing schemes. However, our contact
discontinuity no longer su�ers from this dilemma.

5.2 Example 2

In this example we compute solutions to \Test A", \Test B", \Test C", and
the two cases of \Test D" from [17] where we have redimensionalized the
problems. Note that all of these examples have solutions where the pressure
is constant across the contact discontinuity. Because of this, the pressure
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evolution equation gives good results which are also shown in [17], although
there are large smearing errors due to numerical dissipation.

5.2.1 \Test A"

For \Test A" we use a 1m domain with 100 grid points. The interface is
located midway between the 50th and 51st grid points with left and right
states de�ned as L = 1:4, R = 1:2, �L = 1 kg

m3 , �R = :125 kg
m3 , pL = 1�105Pa,

pR = 1 � 104Pa, and uL = uR = 0ms . We ran the code to a �nal time of
.0007 seconds and the results with the standard scheme from [24] are shown
in �gure 4, while the results using our new scheme with entropy as the
isobaric �x variable are shown in �gure 5. Both sets of results are plotted
on top of the exact solution.

Note that the contact discontinuity is shifted one grid point to the left,
since we estimate its speed with the local uid velocity when advecting the
level set function. During wave interactions, the actual velocity of a contact
discontinuity can vary slightly from the local uid velocity. We have per-
formed a grid re�nement analysis and the contact discontinuity seems to be
o� by one grid cell for all levels of grid re�nement yielding �rst order conver-
gence in location as expected for a discontinuity where exact conservation is
relaxed slightly. A more resolved solution with 400 grid points is shown in
�gure 6.

5.2.2 \Test B"

For \Test B" we use a 1m domain with 100 grid points. A right going shock
is located midway between the 5th and 6th grid points and an interface is
located midway between the 50th and 51st grid points. The left, middle,
and right states are de�ned as L = 1:4, M = 1:4, R = 1:2, �L = 1:3333 kgm3 ,
�M = 1 kg

m3 , �R = :1379 kg
m3 , pL = 1:5�105Pa, pM = 1�105Pa, pR = 1�105Pa,

uL = :3535
p
105ms , and uM = uR = 0ms . We ran the code to a �nal time

of .0012 seconds and the results with the standard scheme from [24] are
shown in �gure 7, while the results using our new scheme with entropy as
the isobaric �x variable are shown in �gure 8. Both sets of results are plotted
on top of the exact solution.

In this case, the contact discontinuity is located in the correct cell. Note
that the weak rarefaction wave (located to the left) and the weak shock wave
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(located to the right) both su�er from numerical dissipation at this level of
resolution, independent of the sharp contact discontinuity. A more resolved
solution with 400 grid points is shown in �gure 9.

5.2.3 \Test D", Case 1

This is similar to \Test B", except that we increase the strength of the shock
with �L = 4:3333 kg

m3 , pL = 1:5 � 106Pa, and uL = 3:2817
p
105m

s
. We ran

the code to a �nal time of .0005 seconds and the results with the standard
scheme from [24] are shown in �gure 10, while the results using our new
scheme with entropy as the isobaric �x variable are shown in �gure 11. Both
sets of results are plotted on top of the exact solution.

In this case, the contact discontinuity is located in the correct cell. Note
that the glitch near x = :2m is due to the capturing of perfect shock initial
data by a shock capturing scheme. This is more pronounced in this example,
since the shock wave is quite strong. If one starts with a smoothed out shock
pro�le, this glitch is no longer present. A more resolved solution with 400
grid points is shown in �gure 12.

5.2.4 \Test C"

This is similar to \Test B", except that we change the uid on the right to
R = 1:249, �R = 3:1538 kg

m3 , pR = 1�105Pa, and uR = 0ms . We ran the code
to a �nal time of .0017 seconds and the results with the standard scheme
from [24] are shown in �gure 13, while the results using our new scheme
with entropy as the isobaric �x variable are shown in �gure 14. Both sets of
results are plotted on top of the exact solution.

In this case is located in the correct cell, although the shock wave located
to the left is shifted two grid points to the right. Once again, these errors
are consistent under grid re�nement yielding �rst order accuracy in location.
In addition, note that these errors do not increase in time, since they are
the result of estimating the velocity of the contact discontinuity by the local
uid velocity during wave interactions. A more resolved solution with 400
grid points is shown in �gure 15.
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5.2.5 \Test D", Case 2

This is similar to \Test C", except that we increase the strength of the shock
with �L = 4:3333 kg

m3 , pL = 1:5 � 106Pa, and uL = 3:2817
p
105ms . We ran

the code to a �nal time of .0007 seconds and the results with the standard
scheme from [24] are shown in �gure 16, while the results using our new
scheme with entropy as the isobaric �x variable are shown in �gure 17. Both
sets of results are plotted on top of the exact solution.

In this case is located in the correct cell, although the shock wave located
to the left is shifted two grid points to the right and the shock wave located
to the right is shifted one grid point to the right. Note that the glitches
near x = :3m and x = :7m are due to the capturing of perfect shock initial
data by a shock capturing scheme. If one starts with a smoothed out shock
pro�le, these glitches are no longer present. A more resolved solution with
400 grid points is shown in �gure 18.

5.3 Example 3

We take the initial data for the shock tube problem from \Test A" in [17]
as in Example 2. This time we compute in two spatial dimensions on a 200
by 200 grid with the shock tube aligned in the diagonal direction. In �gure
19 we show output from the o�-diagonal direction. Note that we ran the
code for

p
2 times longer in order to get a good comparison with \Test A"

in Example 2. The results are plotted on top of the exact solution.

5.4 Example 4

This problem was taken from [32]. Consider a 4m domain with 100 grid
points and the interface located midway between the 50th and 51st grid
points. There is a JWL gas on the left and water on the right with initial
states of �L = 1630 kg

m3 , �R = 1000 kg
m3 , pL = 7:81� 109Pa, pR = 1:0� 105Pa,

and uL = uR = 0ms .
Since the equation of state for water has pressure as a function of density

only, one needs to be careful when choosing the isobaric �x variable. The
most natural choice for water is the internal energy. For simplicity, we do
not use the isobaric �x technique for the JWL gas, and we extend density
directly into the ghost cells.
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We ran the code to a �nal time of .0005 seconds and the results using
our new scheme are shown in �gure 20. The results compare well with the
exact solution in [32].

5.5 Example 5

This problem was taken from [32]. Consider a 10m domain with 500 grid
points and reection boundary conditions applied to both sides of the do-
main. The interface is located midway between the 250th and 251st grid
points, with a gamma law gas,  = 1:25, on the left and water on the
right. The initial states are �L = 1 kg

m3 , �R = 1000 kg
m3 , pL = 1:0 � 105Pa,

pR = 1:0 � 105Pa, and uL = uR = 0ms . In addition, we have a shock in
each uid. Grid points 1 to 48 have � = 8:26605505 kg

m3 , p = 1:0 � 107Pa,
and u = 2949:97131ms . Grid points 481 to 500 have � = 1004:1303 kgm3 ,
p = 1:0� 107Pa, and u = �6:3813588m

s
.

Since the equation of state for water has pressure as a function of density
only, one needs to be careful when choosing the isobaric �x variable. The
most natural choice for water is the internal energy. We use entropy as the
isobaric �x variable in the gas.

We ran the code to a �nal time of .003 seconds and the results using
our new scheme are shown in �gure 21 where we plot log10 � instead of the
density, so that one may see the shock in the gas. In the �gure, we use RED
for the gas and GREEN for the water. In addition, note that the entropy
�eld in the water is not used, so we set it to zero for graphing purposes. The
results compare well with the solution computed in [32].

Note that the pressure evolution equation method in [17] has a di�cult
time dealing with these sorts of contact discontinuities where the velocity
and pressure are not both constant.

5.6 Example 6

This problem was taken from [32]. Consider a 10m domain with 400 grid
points. A reection boundary condition is applied to the left hand side of the
domain, while an outow boundary condition applied to the right hand side
of the domain. Water is located in the central part of the domain surrounded
by a gamma law gas,  = 1:3, on each side. There are two interfaces, one
between the 40th and 41st cell and one in between the 120th and 121st cell.
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The gas has initial values of � = 35 kg
m3 , p = 1:0 � 107Pa, and u = 500m

s
,

while the water has initial values of � = 1004:1303 kgm3 , p = 1:0� 107Pa, and
u = 500m

s
.

This problem is computationally challenging so we modify our numeri-
cal method slightly by choosing the high order viscosity for the ENO-LLF
scheme as the largest of the three separate �eld viscosities as opposed to the
usual �eld by �eld choice. In addition, we only use the second order accurate
version of the spatial method in the water.

Since the equation of state for water has pressure as a function of density
only, one needs to be careful when choosing the isobaric �x variable. The
most natural choice for water is the internal energy. We use entropy as the
isobaric �x variable in the gas.

We ran the code to a �nal time of .007 seconds and the results using
our new scheme are shown in �gure 22 where we plot log10 � instead of the
density, so that one may see the shock in the gas. In the �gure, we use RED
for the gas and GREEN for the water. In addition, note that the entropy
�eld in the water is not used, so we set it to zero for graphing purposes. The
results compare well with the solution computed in [32].

Note that the pressure evolution equation method in [17] has a di�cult
time dealing with these sorts of contact discontinuities where the velocity
and pressure are not both constant.

5.7 Example 7

We examine the convergence and conservation of a stable ow �eld with an
interface. The problem is linear advection of a helium bubble in air and the
nondimensionalized initial conditions are,

(� = 1; u = 1; v = 1; p = 1;  = 1:4) air (32)

(� = :138; u= 1; v = 1; p = 1;  = 1:67) helium (33)

� = �0:2 +
q
(x� :25)2+ (y � :25)2 level set (34)

where � � 0 represents helium and � > 0 represents the air. No reinitial-
ization of the level set function was done. For this advection problem our
scheme achieves the exact state in each of the uid regions, and the only
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error incurred is from the advection of the level set function. This may seem
like a trivial example, but most standard conservative or pressure evolution
schemes would smear out the density and possibly create spurious pressure
oscillations.

A series of experiments were carried out on the unit square to measure
the convergence to the exact solution and to analyze how well the scheme
conserves the mass of each uid. Zero gradient boundary conditions were
used for the conservative uid variables, and linear extrapolation at the
boundaries was used for �. We used a centrally biased ENO scheme [28]
applied in a central framework [22, 33] with third order TVD Runge-Kutta
time integration and third order WENO for the advection of � [15]. We
used �t = 0:1�x and integrated to t = 0:5. We measured two discrete
errors, namely the L1 error in the density �eld, E�, and the relative error
in total mass of helium, EHe, at t = 0:5. The errors and numerical rates of
convergence, Rc, are given in Table I. Clearly the errors in both the density
�eld and in total mass conservation converge at second order.

TABLE I: Numerical accuracy for helium advection in air.

�x = �y E� Rc EHe Rc

1/10 5:17� 10�2 5:00� 10�1

1/20 8:62� 10�3 2.58 8:16� 10�2 2.62
1/40 2:15� 10�3 2.00 2:03� 10�2 2.01
1/80 5:39� 10�4 2.00 5:02� 10�3 2.02

5.8 Example 8

In this example, we will illustrate the di�culty in computing shear waves
with shock capturing schemes and demonstrate the potential bene�ts of our
new method. A full computational analysis of these issues will be treated in
a future paper on viscous ow.

Consider a 1m square domain with  = 1:4, � = 1 kg
m3 , and pL = 1�105Pa

everywhere. An interface is located at x = :5m with tangential velocities of
v = 300ms on the left and v = 200ms on the right. In addition, we impose a
normal velocity of u = 50ms directed to the right. The ow is inviscid and
a shear wave should be advected to the right with a perfect slip boundary
condition. We use a coarse mesh of 20 grid points in each direction and plot
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the y = 10=19

m
cross-section of this initial data in �gure 23. A shock capturing

scheme will smear out this shear wave creating the errors shown in �gure 24
at .0005 seconds and �gure 25 at .005 seconds. Using the slip boundary
condition in our new scheme results in an extremely sharp solution as shown
in �gure 26 at .005 seconds.

5.9 Example 9

We examine a Mach 1.22 air shock collapse of a helium bubble. Experimental
results may be found in [13] and a numerical solution using adaptive mesh
re�nement (AMR) may be found in [31]. The physical initial conditions for
this problem are given in �gure 27, where the upper and lower boundary con-
ditions are reection for solid wall boundaries. The left and right boundary
conditions were zero gradient for the ow variables and linear extrapolation
for �. The nondimensionalized initial conditions are,

(� = 1; u = 0; v = 0; p = 1;  = 1:4) pre-shocked air (35)

(� = 1:3764; u= �:394; v = 0; p = 1:5698;  = 1:4) post-shocked air (36)

(� = :138; u= 0; v = 0; p = 1;  = 1:67) helium (37)

� = �25 +
q
(x� 175)2+ y2 level set (38)

where � � 0 represents helium and � > 0 represents the air. The post-shock
air state was given for x > 225. No reinitialization of the level set function or
isobaric �x was done. We used a centrally biased ENO scheme [28] applied
in a central framework [22, 33] with third order TVD Runge-Kutta time
integration and third order WENO for the advection of � [15]. Note that
the computational domain was only the top half of the physical domain with
a reection condition applied at x = 0. A series of experiments were carried
out at di�erent resolutions (�x = 2; 1; 0:5; 0:25) at CFL = 0:8.

Figure 28 shows an idealized Schlieren image corresponding to 427�s after
the air shock encounters the helium bubble (�x = 0:25). The image was
generated in the exact same manner as described in Section 3.3 of [31]. Also
shown in �gure 28 is a circle representing the original helium-air interface
to make the comparison easier with �gure 9(h) of [31] and �gure 7(h) of
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[13]. The comparisons between the previous AMR solution and experiment
are in good agreement for the general bubble shape and position. There
are di�erences in the details of the interface, which is to be expected since
for this problem the interface is unstable, and without some regularization
there will be no unique or resolved answer to the Euler equations. For this
problem the series of resolutions (�x = 2; 1; 0:5; 0:25) gave (2.5%, 0.78%,
0.42%, 0.43%) as the time averaged relative percent errors in helium mass,
respectively. Clearly this error in conservation of mass is not very signi�cant,
and although it appears to be generally getting better with resolution, we
make no conjecture that conservation will be achieved under resolution to
unstable problems.
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Figure 1: Standard Scheme - 100 points
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Figure 2: Ghost Fluid Method - without isobaric the �x - 100 points
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Figure 3: Ghost Fluid Method - with the isobaric �x - 100 points
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Figure 4: Test A - Standard Scheme - 100 points
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Figure 5: Test A - Ghost Fluid Method - 100 points

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

300

vel

0 0.2 0.4 0.6 0.8 1

1

1.05

1.1

1.15

1.2

1.25

x 10
5 entropy

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

x 10
4 press

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

den

Figure 6: Test A - Ghost Fluid Method - 400 points
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Figure 7: Test B - Standard Scheme - 100 points
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Figure 8: Test B - Ghost Fluid Method - 100 points
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Figure 9: Test B - Ghost Fluid Method - 400 points
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Figure 10: Test D, Case 1 - Standard Scheme - 100 points
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Figure 11: Test D, Case 1 - Ghost Fluid Method - 100 points
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Figure 12: Test D, Case 1 - Ghost Fluid Method - 400 points
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Figure 13: Test C - Standard Scheme - 100 points
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Figure 14: Test C - Ghost Fluid Method - 100 points
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Figure 15: Test C - Ghost Fluid Method - 400 points
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Figure 16: Test D, Case 2 - Standard Scheme - 100 points
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Figure 17: Test D, Case 2 - Ghost Fluid Method - 100 points
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Figure 18: Test D, Case 2 - Ghost Fluid Method - 400 points
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Figure 19: Test A - 2D calculation - diagonal cross-section
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Figure 20: JWL gas on the left & water on the right
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Figure 21: gamma law gas (RED) & water (GREEN)
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Figure 22: gamma law gas (RED) & water (GREEN)
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Figure 23: Shear Wave - initial data
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Figure 24: Shear Wave - Standard Scheme
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Figure 25: Shear Wave - Standard Scheme
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Figure 26: Shear Wave - Ghost Fluid Method
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Figure 27: Physical Domain for Example 8
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Figure 28: Schlieren image for Example 8 at t = 427�s (Rotated 90o clock-
wise)
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A Level Set Methods

In this section, we present some of the relevant ideas for discretization of the
level set advection equation

�t + u�x + v�y = 0 (39)

and the reinitialization equation

�t + S(�o)
�q

�2x + �2y � 1
�
= 0 (40)

We also discuss the advection equation for ghost cells population and the
isobaric �x

It � nxIx � nyIy = 0 (41)

where we have used ~N =< nx; ny >.

A.1 Hamilton Jacobi Discretization

Following [25, 26], we need to �nd a left sided and right sided discretization
for �x which we call ��x and �+x . The same procedure is applied to �y in the
obvious fashion.

A.1.1 3rd Order ENO

We proceed along the lines of [29]. We will use polynomial interpolation to
�nd � and then di�erentiate to get �x.

The zeroth order divided di�erences, D0
i , and all higher order even di-

vided di�erences of � exist at the grid points and will have the subscript i.
The �rst order divided di�erences, D1

i+ 1

2

, and all higher order odd divided

di�erences of � exist at the cell walls and will have the subscript i � 1

2
.

Consider a speci�c grid point i0. To �nd �
�
x , set k = i0 � 1. To �nd �+x ,

set k = i0.
De�ne

Q1(x) = (D1

k+ 1

2

�)(x� xi0): (42)
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If jD2
k�j � jD2

k+1�j, then c = D2
k� and k? = k � 1. Otherwise, c = D2

k+1�

and k? = k. De�ne

Q2(x) = c(x� xk)(x� xk+1): (43)

If jD3

k?� 1

2

�j � jD3

k?+ 1

2

�j, then c? = D3

k?� 1

2

�. Otherwise, c? = D3

k?+ 1

2

�. De�ne

Q3(x) = c?(x� xk?)(x� xk?+1)(x� xk?+2): (44)

And then (��x )i0 is

D1

k+ 1

2

�+ c (2(i0 � k) � 1)4x+ c?
�
3(i0 � k?)2 � 6(i0 � k?) + 2

�
(4x)2: (45)

A.1.2 5th Order WENO

We proceed along the lines of [16] and [15]. Consider a speci�c grid point i0.
To �nd ��x , set

v1 =
�i0�2 � �i0�3

4x ; v2 =
�i0�1 � �i0�2

4x (46)

v3 =
�i0 � �i0�1

4x ; v4 =
�i0+1 � �i0

4x (47)

v5 =
�i0+2 � �i0+1

4x (48)

and to �nd �+x , set

v1 =
�i0+3 � �i0+2

4x ; v2 =
�i0+2 � �i0+1

4x (49)

v3 =
�i0+1 � �i0

4x ; v4 =
�i0 � �i0�1

4x (50)

v5 =
�i0�1 � �i0�2

4x (51)
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Next we de�ne the smoothness

S1 =
13

12
(v1 � 2v2 + v3)

2 +
1

4
(v1 � 4v2 + 3v3)

2 (52)

S2 =
13

12
(v2 � 2v3 + v4)

2 +
1

4
(v2 � v4)

2 (53)

S3 =
13

12
(v3 � 2v4 + v5)

2 +
1

4
(3v3 � 4v4 + v5)

2 (54)

and the weights

a1 =
1

10

1

(�+ S1)2
; w1 =

a1
a1 + a2 + a3

(55)

a2 =
6

10

1

(�+ S2)2
; w2 =

a2
a1 + a2 + a3

(56)

a3 =
3

10

1

(�+ S3)2
; w3 =

a3
a1 + a2 + a3

(57)

to �nally get (��x )i0 =

w1(
v1
3
� 7v2

6
+
11v3
6

) + w2(
�v2
6

+
5v3
6

+
v4
3
) + w3(

v3
3
+
5v4
6
� v5

6
) (58)

Note that we use � = 10�6.

A.2 Convection

In order to solve,

�t + u�x + v�y = 0 (59)

we look at the velocities. If ui0 > 0, then we use ��x . If ui0 < 0, then
we use �+x . If ui0 = 0, then we do not need to choose either. The same
considerations apply to v and �y.
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A.3 Reinitialization

In order to solve,

�t + S(�o)
�q

�2x + �2y � 1
�
= 0 (60)

we can rewrite it as

�t +

 
S(�o)�xp
�2x + �2y

!
�x +

 
S(�o)�yp
�2x + �2y

!
�y = S(�o) (61)

and consider S(�o)�x and S(�o)�y evaluated at i0 to determine the upwind
directions. [30]

We use a modi�cation of Godunov's method [26]. If S(�o)�
+
x � 0 and

S(�o)�
�
x � 0, then we use ��x . If S(�o)�

+
x � 0 and S(�o)�

�
x � 0, then we use

�+x . If S(�o)�
+
x > 0 and S(�o)�

�
x < 0, then we use �x = 0. If S(�o)�

+
x < 0

and S(�o)�
�
x > 0, we de�ne

s =
S(�o)(j�+x j � j��x j)

�+x � ��x
(62)

and if s > 0, then we use ��x . Otherwise we use �
+
x .

The same procedure is repeated for S(�o)�y and the appropriate values
for �x and �y are plugged into equation 60.

Note that we smear out the sign function and de�ne

S(�o) =
�p

�2 + (4x)2 (63)

instead of the exact sign function.
We also use a limiter in the time evolution of the distance function to

keep the interface from crossing grid points.

A.4 Ghost Cells

In order to solve,

It + nxIx + nyIy = 0 (64)

we use a �rst order ENO approximation to I+x and I�x as outlined above for
�. Note that we use �rst order since theoretically this equation is solved to
steady state.
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We will also need to evaluate the unit normal

~N =< nx; ny >=

*
�xp

�2x + �2y
;

�yp
�2x + �2y

+
(65)

at i0, e.g. using central di�erencing. It is usually helpful to use a temporary
variable, �̂, when computing the normal. First copy � into �̂, reinitialize �̂ to
produce an approximate distance function, then compute the normals using
�̂. In this way one can get improved values for the normal without losing
accuracy in the original level set function, �. Note that caution should be
used to avoid division by zero when �x = �y = 0.

If nx > 0, then we use I�x . If nx < 0, then we use I+x . If nx = 0, then
we do not need to choose either. The same considerations apply to the nyIy
term.

In order to solve,

It � nxIx � nyIy = 0 (66)

we use �nx instead of nx and �ny instead of ny in the procedure above.

We use + ~N to update the ghost cells with � > 0 and � ~N to update the
ghost cells with � � 0. where we have chosen the convention that � = 0
belongs to the uid with � < 0. To apply the isobaric �x, we allow a band of
the real uids cells near the interface to be populated along with the cells on
the other side of the interface. In this case, we use + ~N to update the cells
with � > �� and � ~N to update the cells with � < +� where � determines
the thickness of the band. For example, choose � = 1:54x.

A.5 Time Evolution

The advection equation for the level set function is updated together with
the Euler equations.

The reinitialization equation is usually solved in �ctitious time after each
fully complete time step for the Euler equations. For example, set 4� = 4x

2

and take 10 � -steps with a 3rd order TVDRunge Kutta method to reinitialize
about 5 cells on each side of the interface to be approximately a distance
function.

The advection equation for the population of ghost cells must be done
after each substep of the time discretization for the Euler equations, in con-
trast to the reinitialization. For example, the ghost cells must be populated
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after each Euler substep of a Runge Kutta method, whereas the reinitializa-
tion is done after each full Runge Kutta step. This update is also done in
�ctitious time. For example, set 4� = 4x

2
and take about 20 � -steps with a

3rd order TVD Runge Kutta method to populate a small band of ghost cells.
We caution the reader that numerical dissipation could a�ect this ghost cell
population and that they may need more than 20 steps on occasion.

A.6 Boundaries

The following boundary condition keeps the characteristics owing outward
for the level set function. After updating the interior of the domain, we
update the boundary points with

�B = �B�1 + S(�B�1)j�B�1 � �B�2j (67)

where �B lies on the boundary and �B�1 and �B�2 are the adjacent points
in a given coordinate direction.
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